A hybrid stochastic-deterministic optimization method for waveform inversion

نویسندگان

  • Tristan van Leeuwen
  • Mark Schmidt
  • Michael Friedlander
  • Felix Herrmann
چکیده

Present-day high quality 3D acquisition can give us lower frequencies and longer offsets with which to invert. However, the computational costs involved in handling this data explosion are tremendous. Therefore, recent developments in full-waveform inversion have been geared towards reducing the computational costs involved. A key aspect of several approaches that have been proposed is a dramatic reduction in the number of sources used in each iteration. A reduction in the number of sources directly translates to less PDE-solves and hence a lower computational cost. Recent attention has been drawn towards reducing the sources by randomly combining the sources in to a few supershots, but other strategies are also possible. In all cases, the full data misfit, which involves all the sequential sources, is replaced by a reduced misfit that is much cheaper to evaluate because it involves only a small number of sources (batchsize). The batchsize controls the accuracy with which the reduced misfit approximates the full misfit. The optimization of such an inaccurate, or noisy, misfit is the topic of stochastic optimization. In this paper, we propose an optimization strategy that borrows ideas from the field of stochastic optimization. The main idea is that in the early stage of the optimization, far from the true model, we do not need a very accurate misfit. The strategy consists of gradually increasing the batchsize as the iterations proceed. We test the proposed strategy on a synthetic dataset. We achieve a very reasonable inversion result at the cost of roughly 13 evaluations of the full misfit. We observe a speed-up of roughly a factor 20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Capability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields

The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...

متن کامل

Comparing Geostatistical Seismic Inversion Based on Spectral Simulation with Deterministic Inversion: A Case Study

Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data and the result of deterministic inversion is smooth. Low frequency component is obtained fro...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Effects of Probability Function on the Performance of Stochastic Programming

Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011